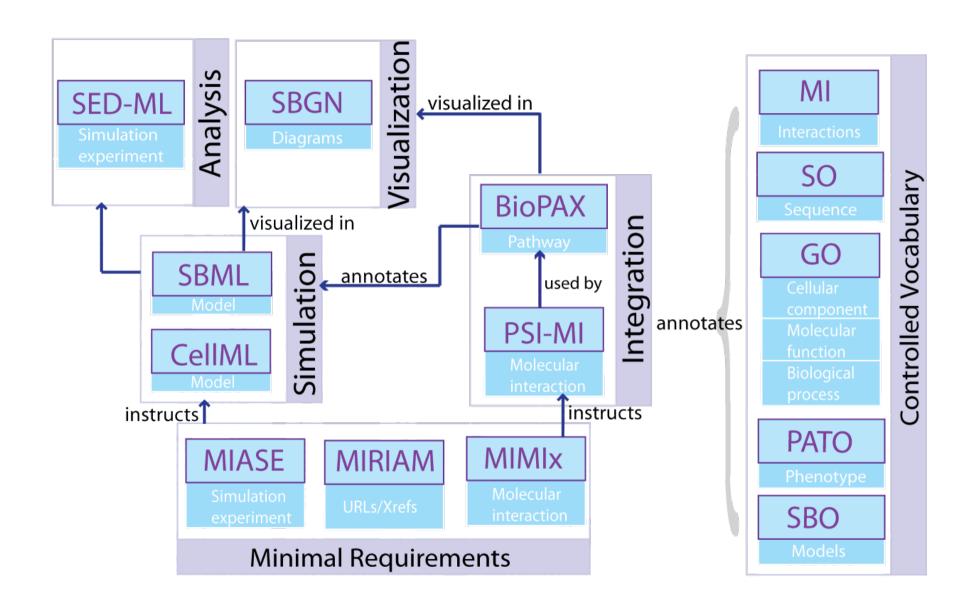

BioPAX: Biological Pathway Exchange

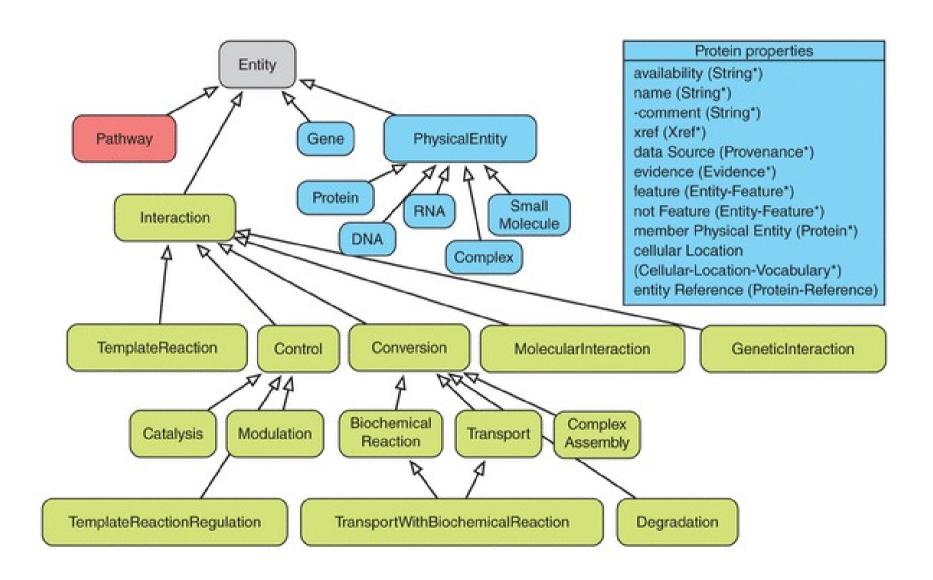

A community standard for representing pathways

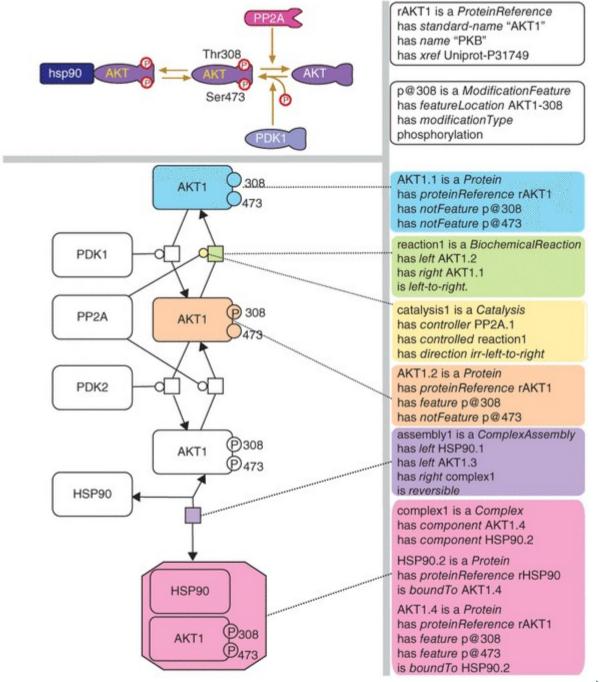
Pathway information processing

When to use BioPAX?

- Information Extraction/Retrieval
 - Pathway Curation, Literature Mining, Finding relevant pathways from high throughput data
- Reporting High Throughput Experiments.
 - ChipSeq, Genetic and Protein-Protein Interactions, high throughput PTM, drug-target interactions.
- Qualitative Network Algorithms: Active Pathways, Paradigm, GEM, MINDY

BioPAX Syntax and Semantics


- Specification defined as a set of OWL classes and properties.
 - http://www.biopax.org/specification.php
- Semantics occasionally differ from the OWL semantics.
 - e.g. Closed world reactions
- Additional restrictions are checked by the BioPAX validator.


What is covered?

- Metabolic Pathways
 - Reactions, reactants, EC numbers, enyzmes, equilibrium constants, co-factors and modulators
- Molecular Interactions (PSI-MI)
- Signaling Pathways
 - PTMs and other features, protein families, cellular location, transport, degradation, complex assembly.
- Gene Regulation
 - Transcription and Translation, DNA "regions" (promoter, enhancer etc.), TF binding, operon.
- Genetic Interactions
 - Interacting partners and resulting phenotype

Common features

- Links to external resources
- Evidence
- Provenance
- Integration with controlled vocabularies
 - GO, PSI-MOD, SO etc.

Who produces BioPAX?

Database	Type, Download format	Number of curated records*
HumanCyc	Metabolic, BioPAX 3	260 small to medium predicted pathways
MSKCC Cancer Cell Map	Signaling, BioPAX 2	10 large curated pathways
Reactome	Metabolic and signaling, BioPAX 3	1,113 small to medium curated pathways
NCI/Nature PID	Signaling, BioPAX 3	186 medium curated pathways
IntAct	Protein interactions, PSI-MI 2.5	157,000 interactions
MINT	Protein interactions, PSI-MI 2.5	121,800 interactions
HPRD	Protein interactions, PSI-MI 2.5	40,600 interactions
MetaCyc	Metabolic, BioPAX 3	1,867 medium curated pathways

Who produces BioPAX? --cntd

BioGRID	Protein and genetic interaction, PSI-MI 2.5	192,000 interactions	
SBCNY IMID	Signaling, BioPAX 2	1,700 interactions	
EcoCyc	Metabolic and signaling, BioPAX 3	276 medium curated pathways	
NetPath	Signaling, BioPAX 3	10 large curated pathways	
BioModels	Metabolic and signaling, BioPAX 2	269 curated pathways	
Panther	Signaling, BioPAX 3	165 curated medium pathways	
Nature MoleculePages	Signaling, BioPAX 3	655 molecules with states	
RegulonDB	Gene regulation, BioPAX 3	2644 regulatory interactions	
MouseCyc	Metabolic, BioPAX 3	347 medium curated pathways	
YeastCyc	Metabolic, BioPAX 3	200 medium curated pathways	

Who produces BioPAX? --cntd

BIND (86)	Molecular, genetic interaction, PSI-MI 2.5	200,000 interactions
DIP (87, 88)	Protein interactions, PSI-MI 2.5	71,000 interactions
PhosphoSite	Signaling, BioPAX 3	>2,000 kinase-substrate interactions
INOH (89)	Signaling, BioPAX 3	101 medium curated pathways
SPIKE	Signaling, BioPAX 3	26 medium curated pathways
PharmGKB	Signaling, BioPAX 3	72 medium curated pathways
~200 BioCycs (16, 90)	Metabolic and signaling, BioPAX 3	Mostly predicted
MIPS CYGD (91)	Protein interactions, PSI-MI 2.5	Statistics unavailable
I2D (92)	Protein interaction, PSI-MI 2.5	Predicted
WikiPathways	Diverse, BioPAX 3	1615 pathways

More at Pathguide.org

BioPAX

cBio MSKCC

Pathquide the pathway resource list

Navigation

Protein-Protein Interactions

Metabolic Pathways

Signaling Pathways

Pathway Diagrams

Transcription Factors / Gene Regulatory Networks

Protein-Compound Interactions

Genetic Interaction Networks

Protein Sequence Focused

Other

Search

Organisms

All Availability

Standards

ΛII

All

Complete Listing of All Pathquide Resources

Pathquide contains information about 325 biological pathway related resources and molecular interaction related resources. Click on a link to go to the resource home page or 'Details' for a description page. Databases that are free and those supporting BioPAX, CelIML, PSI-MI or SBML standards are respectively indicated.

If you know of a pathway resource that is not listed here, or have other questions or comments, please send us an e-mail.

News New visual navigation May.2010 Click the 'Database interactions' link on the left menu to access.

Major update

All resources were recently reviewed and many new ones

Protein-Protein Interactions			\gg
Database Name (Order: alphabetically by web popularity 0)	Full Record	Availability Stan	ndards
3DID - 3D interacting domains	Details	Free	
ADAN - Prediction of protein-protein interaction of modular domains	Details	Free	
AllFuse - Functional Associations of Proteins in Complete Genomes	Details	X	
aMAZE - Protein Function and Biochemical Pathways Project	Details	Free	
APID - Agile Protein Interaction DataAnalyzer	Details	Free	
ASEdb - Alanine Scanning Energetics Database	Details	Free	
ASPD - Artificial Selected Proteins/Peptides Database	Details	Free	
AtPID - Arabidopsis thaliana Protein Interactome Database	Details	Free	
RID Rinding Interface Database	Detaile	Free	

What can I do with BioPAX?

- In which pathways does p53 play a role?
- How is the serine 17 phosphorylation of p53 controlled?
- Given a gene list, which pathways are overrepresented?
- Which pathways map to the Gene Ontology term 'apoptosis'?
- How are B-Catenin and p53 is connected?
- Which network regions in yeast are transcriptionally active?
- How is a given set of somatically altered genes in colon cancer connected?

Advanced use-cases

- Find causal links between a given a set of genomic changes and matched proteomic profiles.
- Given metabolomic profiles detect differentially active pathways.
- Auto-generate orthologous pathways
- Rule-based modeling

Where do I start?

- OWL/Sparql Good for querying, inference & data transformation.
- Paxtools Java Library Full programmatic API

 good for complex algorithms and embedding into applications. Also good for transforming Paxtools to simpler formats.

Choice is yours! We are happy to help, just ask!

Get Involved

- Visit biopax.org and join the discussion mailing list biopax-discuss@googlegroups.com
- Make pathway data available in BioPAX
- Build software that supports BioPAX
- Contribute BioPAX worked examples, documentation and specification reviews
- Spread the word about BioPAX
- Participate in annual Combine & Harmony meetings

Acknowledgements

- BioPAX community!
- Gary Bader
- Nadia Anwar
- Igor Rodchenkov
- Özgün Babur
- Chris Sander

- Harmony Organizers
- Mike Hucka
- Nicolas Le Novère

Funding: NIH/NIGMS

